
An Adaptive Web Cache Access Predictor  
Using Neural Network 

Wen Tian, Ben Choi, and Vir V. Phoha 

Computer Science, College of Engineering and Science 
Louisiana Tech University, Ruston, LA71272, USA 

Wen_tian2@yahoo.com 
pro@BenChoi.org 

phoha@coes.latech.edu 

Abstract. This paper presents a novel approach to successfully predict 
Web pages that are most likely to be re-accessed in a given period of 
time. We present the design of an intelligent predictor that can be 
implemented on a Web server to guide caching strategies. Our 
approach is adaptive and learns the changing access patterns of pages 
in a Web site. The core of our predictor is a neural network that uses a 
back-propagation learning rule. We present results of the application 
of this predictor on static data using log files; it can be extended to 
learn the distribution of live Web page access patterns. Our 
simulations show fast learning, uniformly good prediction, and up to 
82% correct prediction for the following six months based on a one-
day training data. This long-range prediction accuracy is attributed to 
the static structure of the test Web site. 

1   Introduction 

Use of the Internet is rapidly increasing, and the increase in use motivates the 
increase in services, and vice versa. All indications are that the use of Internet, 
services offered, and new applications on the Internet will grow exponentially in the 
future, resulting in an explosive increase in traffic on the Internet. However, the 
Internet infrastructure has not kept pace with the increase in traffic, resulting in 
greater latency for retrieving and loading data on the browsers. Thus, Internet users 
experience slow response times, especially for popular Web sites. Recently, Web 
caching has emerged as a promising area to reduce latency in retrieval of Web 
documents. 

In this paper, we present methods and the design of an intelligent predictor for 
effective Web caching to reduce access latency. Our predictor uses back-propagation 
neural network to improve the performance of Web caching by predicting the most 
likely re-accessed objects and then keep these objects in the cache. Our simulation 
results show promise of successfully capturing Web access patterns, which can be 
used to reduce latency for Internet users. 

BCs
Text Box
BenChoi.info

http://BenChoi.info


Our motivation to use neural networks to predict web accesses follows. The 
distribution of Web page requests is highly nonlinear and show self-similarity in 
Web page requests. Since, Neural nets are capable of examining many competing 
hypotheses at the same time and are more robust than statistical techniques when 
underlying distributions are generated by non-linear process, it is then natural to use 
neural nets to predict Web page accesses. Another motivation to use Back-
propagation weight update rule in our study is that the Web access logs provide the 
history of accesses, which can be divided into training examples (test data) to train, 
and test the predicting power of a supervised learning neural net (see Section 3.2 for 
our strategy to segment the Web log into training, validation, and test data and our 
design of NN predictor).  Thus, we have all the basic ingredients to build a 
successful neural network predictor. 

The salient features of our approach are: (1) Our predictor learns the patterns 
inherent in the past Web requests to predict the future Web requests;  (2) It adapts to 
the changing nature of Web requests; (3) It is not dependent on the underlying 
statistical distribution of Web requests; (4) It is robust to noise and isolated requests; 
and (5) It can be implemented in hardware or in software.  

This paper is organized as follows. In the next subsection, we provide the 
definition of the symbols used in this paper. In Section 2, we briefly review the 
related work in caching replacement algorithms. In Section 3, we propose an 
adaptive Web access predictor using back-propagation neural network to predict the 
most likely re-accessed objects. In Section 4, we present our simulation results. 
Finally, in Section 5, we provide conclusion and suggest future work. 

1.1  Terminology 

This section provides definitions of the symbols used in this paper. 
 α  A threshold value to determine whether the desired value should be 1 or 0. 
 β    A threshold value to control learning and prediction granularity. 
 WT     The training window 
    NT    The size of the training window 
     WP     The prediction window 
    NP     The size of the prediction window 
     WB     The backward-looking window in learning phase 
     WF     The forward-looking window in learning phase 
     WF2   The forward-looking window in predicting phase 
    NF2     The size of the window WF2  
    Wi,j    The weight value from node i to node j in the neural model  
 η  The learning rate for back-propagation weight update rule. 
     d        The desired output 
      t         Time step in the neural net training phase 



2     Related Work 

Numerous cache replacement algorithms have been proposed by Web caching 
researchers. The most popular algorithms are: LRU (Least Recently Used) [3], LFU 
(Least Frequently Used) [3], GDS (Greedy Dual-Size) [14], and LFUDA (LFU with 
Dynamic Aging) [2], and others reported in [1][2][3] [4] [7] [11] [13]. 

LRU deletes the objects that have not been requested for the longest time. LFU 
replaces objects with the lowest access counts; however, this algorithm tends to fill 
the cache up with frequently accessed old objects. LFUDA is a variant of LFU that 
uses dynamic aging to accommodate shifts in the set of popular objects. The new 
feature prevents previously popular objects from polluting the cache by adding an 
age factor to the reference counts when a new object is added to the cache. GDS 
takes the size and the cost for retrieving objects into account, this algorithm assigns a 
value, V, to each object in the cache, the V value is set to the cost of retrieving the 
object from the origin server, divided by its size. When the cache is full, the object 
with the smallest V value is replaced. 

Few of these algorithms use artificial intelligence techniques to predict Web 
accesses. Our work builds on the work of Foong, Hu and Heisey [5] who use logistic 
regression to build an adaptive Web cache. The drawbacks of their approach are:  
extensive computation required to fit logistic curve for small updates; difficulty of 
learning access patterns, and absence of a scheduler. Instead, we use a neural 
network [6] [9] [15], which can be implemented in hardware for real time response, 
and has fast learning ability. We also present a separate scheduler for training and 
prediction. We introduce our approach in the following section. 

3    Our Design Of A Web Access Predictor 

In this section, we present our design of a Web access predictor. A schematic of our 
intelligent predictor is given in Fig. 1. The predictor has two modules: preprocessing 
module and processing module. Both of these modules can run as background 
processes in a Web server.  
 
 
 

 

 

Fig. 1.  Schematic of an intelligent predictor 



The preprocessor in Fig. 1 handles the filtering and preparation of data in a format 
to be fed to the processor. The processor consists of a core and a moving window 
protocol. The design of these components is provided in the follow subsections. 

3.1  Preprocessor 

For testing our design, we use Web log files from Boston University, spanning the 
timeframe from November 21, 1994 through May 8, 1995 [8].  The raw data from 
the log file is in the following form: 
 
<machine name, timestamp, user id, URL, size of the document, object retrieval time 
in second>  

 
We remove any extraneous data, and transform the useful data into a vector of the 
form  {URL, <x1, x2, x3, x4, x5>}.  

 
X1 : Type of document   
X2 : Number of previous hits 
X3 : Relative access frequency 
X4 : Size of document (in bytes) 
X5 : Retrieval time(in seconds) 
 

The heuristic to choose value for X1 is as follows. The values assigned are based on 
the relative frequency of the type of the files, since there are more image files than 
HTML files, we assign a higher value to image files and a lower value to HTML 
files. Since there are few other file types, to penalize learning of other file types, we 
assign a negative value for all other file types. The following chosen values are 
somewhat arbitrarily but these chosen values gave us good results in our simulations: 
 

     X1 = 10: HTML files 
             15: image files 
             -5: all other files 

 
We also consider the file entries having the same URL but having different file size 
and different retrieval time as the updated version of previous occurrence of such 
file. Moreover, if a file entry has size of zero and the retrieval delay is also zero, 
which means the request was satisfied by the internal cache, then we obtain the file 
size and the retrieval time from the previous occurrence of the file having the same 
URL. Next, we can get the document size (X4) and retrieval time (X5) directly from 
the raw data. The process for extracting the value of X2, and X3 are provided in 
Section 3.2.1. These values of X1, X2, … X5 are provided as training vectors for the 
next stage.  

3.2  Processor 

The second stage consists of training our neural network using the data obtained 
from preprocessing. After the network has been trained, we use the network to 
predict if an object will be re-accessed or not. Fig. 2 shows the design of our 
predictor using a scheduler and a neural segment. 



  
 

Fig. 2.  Design of a neural network architecture to predict cache re-access probability 

3.2.1  Training the Predictor Using Back-Propagation Algorithm 
 

As indicated in Fig. 2, the scheduler selects the training data and the prediction 
windows. The training data was selected using training window WT, which has size 
of NT. We also specify a backward-looking window WB and a forward-looking 
window WF (as was done in [5]). The window WB and WF are sliding windows 
related to current entry. The WB is the previous log accesses from the current entry 
while WF is the following log accesses from the current entry. 

Getting Input Vectors 
 

We use the following method to obtain the input vectors for each access log entry. 
(1) For retrieving X1, X4, X5, see Section 3.1. 
(2) X2 (previous hit), is equal to how many times an entry has been accessed in 

window WB. 
(3) X3  (relative access frequency) is equal to the total number of accesses of a 

particular URL in window WT divided by NT. 
After getting the inputs X1, X2, X3, X4, X5, we normalize their values to make them 
in the similar range. Since these variables have different range, such as the size may 
be 10000 bytes, where as retrieval time may be 2 seconds; so, we scale these entries 
by dividing each item by a respective constant to scale them to the same range. 

Getting Desired Output 
 

The desired output is a binary variable. If the object in WT has been re-accessed at 
least α times in WF, then we assign value one as the desired output, otherwise zero. 
Higher value of α results in fewer pages to be assigned value one but more accurate 
prediction, while smaller α value results in more pages to be assigned value one but 
less accurate prediction. 

We modify the standard back-propagation training algorithm [12] [10] [15] to 
adopt to Web caching. Figure 2 contains our architecture of a feed-forward multi-
layer neural network, with five input nodes (corresponding to X1, X2, X3, X4, X5), 
four hidden nodes, and one output node to predict. An outline of back-propagation 
algorithm follows: 



function BP-Net(network, training data, α)  
returns a network with modified weights 
inputs: network, a multilayer network with initialized weight 
values between –1 to 1, training data, a set of input/output, 
desired output pairs, η is the learning rate 
 repeat 
   for each e in training data do 
     normalize the input  
     /* compute the output for this example */ 
     calculate the input values for the hidden layer 
         using sigmoid  function 
     calculate the output for the output layer  
         using sigmoid function 
     /* update the weights leading to the  
        output layer */ 
     /* x

i
 are input values and y

j
 s are output values, 

        d
j 
is the desired output */ 

     W
i j
(t+1)←  W

i,j
(t)+ η × δ

j
 × x

i 

     where  δ
j
 = y

j
(1- y

j
)(d

j
- y

j
),  

            x
i
 is the input in hidden layer 

     /* update the weights in the subsequent layers */ 
     W

i j
(t+1) ←  W

i,j
(t)+ η × δ

j
 × x

i
 

     where δ
j
 = x

j
(1- x

j
)∑δ

k
W
jk
 ,  

         k is over all nodes in the layers above node j 
     /* calculate the mean square err between  
         new weights and old weights */ 
     Err ← ( W

i j
(t+1) - W

i,j
(t) )2         

 

        
end              

 until network has converged 
return network     

3.2.2  Prediction Stage 
 

After the network has been trained, it was used to predict future access patterns. We 
selected Wp as the prediction window that consists of Np entries. The prediction 
results were compared with the available test log entries. In this stage, we specify a 
sliding forward-looking window WF2 and a threshold β. WF2 contains the next NF2 
access entries related to the current entry. The following pseudo-code shows the 
method for testing the prediction. 

 
boolean correct-prediction(input vector) 
   calculate the actual output V with input vector; 
   calculate the number of hits H the object has been 
      re-accessed in window WF2;     
   /* the predictor predicts the object will  
       be re-accessed */ 
   if ((V >= 0.6) && (H >= •))         
     return true;    // correctly predicted 
   /* the predictor predicts the object will not be  
      re-accessed */    
   if ((V < 0.6) && (H < •)) 
     return true;   // correctly predicted  
   else 
     return false;           



4     Simulation Results 

In our simulations, we choose NT = 500, NP = 5000,  α = 3, NB = NF = 50 and NF2 = 
200. We use log file of one day as the training data. The network converged after 
8000 iterations, the mean square error (MSE) value is less than 0.005. Then we use 
the network to predict access patterns for the next six months. Tables 1 and 2 show 
the results having β value ranging from 1 to 5.  In the tables, learning performance 
represents the percentage of correct prediction on the data that were part of the 
training data while prediction performance represents the percentage of correct 
prediction on data that were not part of the training data. 

 
Table 1.  Sample of Simulation Result 1. 

 
                     Learning data: December 1994, prediction data: January 1995 

MSE 
LEARNING 

PERFORMANCE 
(TESTING) 

β PREDICTION 
PERFORMANCE 

0.00188 80% 1 61% 
0.00444 83% 2 67% 
0.00417 86% 3 79% 
0.00270 85% 4 82% 
0.00326 80% 5 79% 

 
Table 2. . Sample of Simulation Result 2 

 
Learning data: December 1994, prediction data: May 1995 

MSE 
LEARNING 

PERFORMANCE 
(TESTING) 

β PREDICTION 
PERFORMANCE 

0.00401 80% 1 61% 
0.00331 85% 2 72% 
0.00336 82% 3 71% 
0.00358 83% 4 75% 
0.00042 82% 5 76% 

 
The simulations were done for more than twenty times [16], Tables 1 and 2 are a 

representative sample of our simulation results. From the tables, we can see that as 
the β value increases the prediction accuracy increases and it stabilizes for β > 3.  So 
we choose β = 4 as the threshold value for this Web site, and we achieve up to 82% 
percentage of correct prediction (even though the prediction data are six months 
from the training data).  Figure 3 shows the prediction percentage for the next six 
months for different values of β (we use the training data from one day, then predict 
the next six months). 



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Beta 1
Beta 2
Beta 3
Beta 4
Beta 5

 

Fig. 3. . Simulation results with different β value 
 
From Fig. 3, we can see that the prediction appears to be uniform (approximately 

ranging from 60% to 82%, except for month 4 for β = 1) over a period of six months, 
we believe this is because the structure of Web site has not changed much over the 
period of data collected from the Web logs [8]. 

5   Conclusion and Future Work 

In this work, we have successfully presented a novel technique to predict future Web 
accesses based on history of Web accesses in a Web site. Based on this idea, we 
have built an intelligent predictor that learns the patterns inherent in the access 
history of Web pages in a Web site and successfully predicts the future accesses. Our 
simulations show that the predictor learns the access patterns and we have been able 
to predict up to 86% accuracy for data on which the network has already been 
trained and up to 82% accuracy on new and never seen before data. We have also 
presented heuristics to control the granularity of training data and prediction of the 
accesses. The success of this technique has opened up many new areas of research. 
Some of the future areas of further exploration are listed below. 
 
• Develop heuristics to predict the short and long-range period for which current 

training gives good future prediction. Successful estimate of this time period will 
help develop strategies to retrain the network. 

• Explore other architectures for building the predictor, such as, Self Organizing 
Feature maps, Adaptive Resonance Theory, Recurrent neural networks, and 
Radial Basis Function neural network. 

• Implement our technique as part of server software, so that the system can be 
tested in live environment. At present, we have used data collected from log files, 
which is a static data. We would like to test this technique in a real time and live 
environment.  

• At present, for a significant number of new Web accesses, the method requires 
retraining. We would like to explore building a dynamic model of a perceptron,  
 



so that only a small part of weights may be changed by adding or deleting nodes.  
Thus, the training for new patterns would require weight updates for only part of 
the network. This type of network should learn on the fly without updating the 
complete set of weights, resulting in no need to completely retrain the network. 

Acknowledgements 

The access log used in our experiments is available at The Internet Traffic Archive 
(http://ita.ee.lbl.gov/index.html) sponsored by ACM SIGCOMM. It was collected by 
the Oceans Research Group (http://cs-www.bu.edu/groups/oceans/Home.html) at 
Boston University for their work, “Characteristics of WWW Client Traces”, which 
was authored by Carlos A. Cunha, Azer Bestavros, and Mark E. Crovella. 

6  References  

[1]  Ramon Caceres, Fred Douglis, Anja Feldman, Gideon Glass, and Michael 
Rabinovich, Web proxy caching: the devil is in the details, 1997~2001 NEC 
Research Institute. 

[2]  John Dilley and Martin Arlitt, Improving Proxy Cache Performance: Analysis of 
Three Replacement Policies, IEEE Internet Computing, November-December 
1999, pp. 44- 50. 

[3]  Duane Wessels, Web Caching. O’Reilly, 2001. 
[4]  Li Fan, Pei Cao, and Quinn Jacobson, Web prefetching between low-bandwidth 

clients and proxies: potential and performance, Available at 
http://www.cs.wisc.edu/~cao/papers/prepush.html  (last accessed September 18, 
2001.) 

[5]  Annie P. Foong, Yu-Hen Hu, and Dennis M. Heisey, Logistic Regression in an 
Adaptive Web Cache, IEEE Internet Computing, September-October 1999, pp. 
27-36. 

[6]  Freeman J. and Sakura D. Neural Networks: Algorithms, Applications, and 
Programming Techniques. Addison-Wesley, 1991. 

[7]  Dan Foygel and Dennis Strelow, Reducing Web latency with hierarchical 
cache-based prefetching, proceeding of the 2000 international workshop on 
parallel processing in IEEE 2000. 

[8]  Internet Traffic Archive, available at http://ita.ee.lbl.gov/html/traces.html (last 
accessed November 4, 2001.) 

[9]  J. Hertz, A. Krogh, and R. G. Palmer, Introduction to theory of Neural 
Computation, Addison-Wesley, Reading, Mass., 1991. 

[10] Jacobs R.   Increased rates of convergence through learning rate adaptation. 
Neural Networks 1, 295-307, 1988. 

[11] Ludmila Cherkasova, Improving WWW Proxies Performance with Greedy-
Dual-Size-Frequency  Caching Policy, HP laboratories report No. HPL-98-
69R1, April, 1998. 



[12] Ronald W. Lodewyck and Pi-Sheng Deng, Experimentation with a back-
propagation neural network, Information and Management 24 (1993) Pp. 1-8.   

[13] Evangelos P. Markatos and Catherine E. Chronaki, A Top-10 approach to 
prefetching on the Web. Technical Report 173, ICS-FORTH. Available from 
http://www.ics.forth.gr/proj/arch-vlsi/www.html (last accessed June 27, 2001.) 

[14] N. Young, On-line caching as cache size varies, available in the 2nd Annual 
ACM-SIAM Symposium on Discrete Algorithms, pp. 241-250, 1991. 

[15] R. P. Lippmann, An Introduction to Computing with Neural Nets,   IEEE ASSP 
Magazine, Vol.4, No.2, Apr.1987, pp. 4-22. 

[16] Wen Tian, Design Of An Adaptive Web Access Predictor Using Neural 
Network, MS Report, Computer Science Department, Louisiana Tech 
University, 2001. 

 


	Choi 2002: Wen Tian, Ben Choi, and Vir Phoha, “An Adaptive Web Cache Access Predictor Using Neural Network,” Developments in Applied Artificial Intelligence, IEA/AIE 2002, 
Lecture Notes in Artificial Intelligence, Vol. 2358, pp. 450-459, 2002.


