Dynamic Programming

A framework to solve Optimization problems

> An Algorithm Design Technique
7 A framework to solve Optimization problems

* Elements of Dynamic Programming

* Dynamic programming version of a recursive
algorithm

» Developing a Dynamic Programming Algorithm
~ Multiplying a Sequence of Matrices

THCH

Computer Science

* For each current choice:
- Determine what subproblem(s) would remain if this
choice were made.
= Recursively find the optimal costs of those subproblems.
= Combine those costs with the cost of the current choice
itself to obtain an overall cost for this choice
 Select a current choice that produced the minimum
overall cost.

Elements of Dynamic Programming

Memoization for Dynamic¢ programming
version of a recursive algorithm e.g.

» Constructing solution to a problem by building it up
dynamically from solutions to smaller (or simpler) sub-
problems

> sub-instances are d to obtain sub-inst: of increasing
size, until finally arriving at the solution of the original instance.

> make a choice at each step, but the choice may depend on the
solutions to sub-problems

* Principle of optimality
> the optimal solution to any nontrivial instance of a problem is a
combination of optimal solutions to some of its sub-instances.
* Memoization (for overlapping sub-problems)
> avoid calculating the same thing twice,

- usually by keeping a table of know results that fills up as sub-
instances are solved.

* Trade space for speed by storing solutions to sub-
problems rather than re-computing them.

* As solutions are found for suproblems, they are
recorded in a dictionary, say soln.

- Before any recursive call, say on subproblem Q, check
the dictionary soln to see if a solution for Q has been
stored.

> If no solution has been stored, go ahead with recursive call.
> If a solution has been stored for Q, retrieve the stored solution, and
do not make the recursive call.

- Just before returning the solution, store it in the
dictionary soln.

Dynamic programming version of the fib.

fibDPwrap(n)
Dict soln = create(n);
return fibDP(soln, n);

fFibDP(soln, k)
int fib, f1, f2;
if(k = 2)
fib = k;
else
if imemberisoln, k—=1) == false)
fFl = fibDP(soln, k=1);
else
fFl = retrieve(soln, k—1);

if (member(soln, k—2) == false)
f2 = fibDP(soln, k—2);

else
fF2 = retrieve(soln, k—=2);

fib = F1 + f2;
store(soln, k, fib):
return fib;

Development of
a dynamic programming algorithm

* Characterize the structure of an optimal solution
~ Breaking a problem into sub-problem
= whether principle of optimality apply
+ Recursively define the value of an optimal solution
- define the value of an optimal solution based on value of
solutions to sub-problems
* Compute the value of an optimal solution in a bottom-
up fashion

~compute in a bottom-up fashion and save the values
along the way

> later steps use the save values of pervious steps

 Construct an optimal solution from computed
information




Dynamic programming, e.g.

bottom-up approach

* Problem: Matrix-chain multiplication
) a chain of <A1, A2, ..., An> of n matrices
) find a way that minimizes the number of scalar
multiplications to computer the produce A1A2...An
* Strategy:
* Breaking a problem into sub-problem
> AIA2..AK, Ay, A.,...AD
» Recursively define the value of an optimal solution
>mlijl =0ifi=j
7 m[i,j|= min{i<=k<j} (m[i,k][+m[k+Lj]+p;,p,p;)
Fforl<=i<=j<=n

* MatricChainOrder(n)
»fori=1ton
- mli,i]=0
»for1=2ton
> fori=1ton-1+1
. jeitll
m(ij] = inf.
« for k=i to j-1
— gq=m[i,k] + m[k+1,j] + pi-1pkpj
~ if g <mlij]
m[ij]=q
~ slij]=k
> //At each step, the m[i, j] cost computed depends only on
table entries m[i,k] and m[k+1, j] already computed

Construct an optimal solution from
computed information

* MatrixChainMult(A, s, i, j)
Fif j>i
> x = MatricChainMult(A, s, i, s[i,j])
>~y = MatrixChainMult(A, s, s[i,j]+1, j)
> return matrixMult(x, y)
> else return Ai

* Analysis:
» Time Q(n?) space 0(n?)
> Comparing to Time Q(4"/n%?2) by brute-force exhaustive
search.

* >>gsee Introduction to Algorithms




