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TECH
Computer Science

Dynamic Programming

An Algorithm Design Technique
A framework to solve Optimization problems

• Elements of Dynamic Programming
• Dynamic programming version of a recursive 

algorithm
• Developing a Dynamic Programming Algorithm

Multiplying a Sequence of Matrices

A framework to solve Optimization problems
• For each current choice:

Determine what subproblem(s) would remain if this 
choice were made.
Recursively find the optimal costs of those subproblems.
Combine those costs with the cost of the current choice 
itself to obtain an overall cost for this choice

• Select a current choice that produced the minimum 
overall cost.

Elements of Dynamic Programming
• Constructing solution to a problem by building it up 

dynamically from solutions to smaller (or simpler) sub-
problems

sub-instances are combined to obtain sub-instances of increasing 
size, until finally arriving at the solution of the original instance.
make a choice at each step, but the choice may depend on the 
solutions to sub-problems

• Principle of optimality
the optimal solution to any nontrivial instance of a problem is a 
combination of optimal solutions to some of its sub-instances. 

• Memoization (for overlapping sub-problems)
avoid calculating the same thing twice, 
usually by keeping a table of know results that fills up as sub-
instances are solved. 

Memoization for Dynamic programming 
version of a recursive algorithm e.g.
• Trade space for speed by storing solutions to sub-

problems rather than re-computing them. 
• As solutions are found for suproblems, they are 

recorded in a dictionary, say soln. 
Before any recursive call, say on subproblem Q, check 
the dictionary soln to see if a solution for Q has been 
stored.
f If no solution has been stored, go ahead with recursive call.
f If a solution has been stored for Q, retrieve the stored solution, and 

do not make the recursive call.

Just before returning the solution, store it in the 
dictionary soln. 

Dynamic programming version of the fib.
Development of 
a dynamic programming algorithm
• Characterize the structure of an optimal solution

Breaking a problem into sub-problem
whether principle of optimality apply

• Recursively define the value of an optimal solution
define the value of an optimal solution based on value of 
solutions to sub-problems

• Compute the value of an optimal solution in a bottom-
up fashion

compute in a bottom-up fashion and save the values 
along the way
later steps use the save values of pervious steps

• Construct an optimal solution from computed 
information
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Dynamic programming, e.g.
• Problem: Matrix-chain multiplication

a chain of <A1, A2, …, An> of n matrices
find a way that minimizes the number of scalar 
multiplications to computer the produce A1A2…An

• Strategy:
• Breaking a problem into sub-problem

A1A2...Ak,   Ak+1Ak+2…An

• Recursively define the value of an optimal solution
m[i,j] = 0 if i = j
m[i,j]= min{i<=k<j} (m[i,k]+m[k+1,j]+pi-1pkpj)
for 1 <= i <= j <= n

bottom-up approach
• MatricChainOrder(n)

for i= 1 to n
f m[i,i] = 0

for l = 2 to n
f for i = 1 to n-l+1

• j=i+l-1
• m[i,j] = inf. 
• for k=i to j-1

– q=m[i,k] + m[k+1,j] + pi-1pkpj
– if q < m[i,j]
– m[i,j] = q
– s[i,j] = k

//At each step, the m[i, j] cost computed depends only on 
table entries m[i,k] and m[k+1, j] already computed

Construct an optimal solution from 
computed information
• MatrixChainMult(A, s, i, j)

if j>i
f x = MatricChainMult(A, s, i, s[i,j])
f y = MatrixChainMult(A, s, s[i,j]+1, j)
f return matrixMult(x, y)

else return Ai

• Analysis:
Time Ω(n3) space θ(n2)
Comparing to Time Ω(4n/n3/2) by brute-force exhaustive 
search. 

• >> see Introduction to Algorithms


