
1

TECH
Computer Science

String Matching

detecting the occurrence of a particular substring
(pattern) in another string (text)

• A straightforward Solution
• The Knuth-Morris-Pratt Algorithm
• The Boyer-Moore Algorithm

Straightforward solution
• Algorithm: Simple string matching
• Input: P and T, the pattern and text strings; m, the length of P.

The pattern is assumed to be nonempty.
• Output: The return value is the index in T where a copy of P

begins, or -1 if no match for P is found.

int simpleScan(char[] P,char[] T,int m)
• int match //value to return.
• int i,j,k;
• match = -1;
• j=1;k=1; i=j;
• while(endText(T,j)==false)
• if(k>m)
• match = i; //match found.
• break;
• if(tj == pk)
• j++; k++;
• else
• //Back up over matched characters.
• int backup=k-1;
• j = j-backup;
• k = k-backup;
• //Slide pattern forward,start over.
• j++; i=j;
• return match;

Analysis
• Worst-case complexity is in θ(mn)
• Need to back up.
• Works quite well on average for natural language.

The Knuth-Morris-Pratt Algorithm
• Pattern Matching with Finite Automata

e.g. P = “AABC”

The Knuth-Morris-Pratt Flowchart
• Character labels are inside the nodes
• Each node has two arrows out to other nodes: success

link, or fail link
• next character is read only after a success link
• A special node, node 0, called “get next char” which

read in next text character.
f e.g. P = “ABABCB”

2

Construction of the KMP Flowchart
• Definition:Fail links

We define fail[k] as the largest r (with r<k) such that
p1,..pr-1 matches pk-r+1...pk-1.That is the (r-1) character
prefix of P is identical to the one (r-1) character
substring ending at index k-1. Thus the fail links are
determined by repetition within P itself.

Algorithm: KMP flowchart construction
• Input: P,a string of characters;m,the length of P.
• Output: fail,the array of failure links,defined for indexes

1,...,m.The array is passed in and the algorithm fills it.
• Step:
• void kmpSetup(char[] P, int m, int[] fail)
• int k,s
• 1. fail[1]=0;
• 2. for(k=2;k<=m;k++)
• 3. s=fail[k-1];
• 4. while(s>=1)
• 5. if(ps==pk-1)
• 6. break;
• 7. s=fail[s];
• 8. fail[k]=s+1;

The Knuth-Morris-Pratt Scan Algorithm
• int kmpScan(char[] P,char[] T,int m,int[] fail)
• int match, j,k;
• match= -1;
• j=1; k=1;
• while(endText(T,j)==false)
• if(k>m)
• match = j-m;
• break;
• if(k==0)
• j++; k=1;
• else if(tj==pk)
• j++; k++;
• else
• //Follow fail arrow.
• k=fail[k];
• //continue loop.
• return match;

Analysis
• KMP Flowchart Construction require 2m – 3

character comparisons in the worst case
• The scan algorithm requires 2n character comparisons

in the worst case
• Overall: Worst case complexity is θ(n+m)

The Boyer-Moore Algorithm
• The new idea

first heuristic
f e.g. scan from right to left, jump forward …

Find “must” in
f If you wish to understand you must…

• must
• 1 1 1 1 1 111 1 1 1211
• If you wish to understand you must…

Algorithm:Computing Jumps for
the Boyer-Morre Algorithm
• Input:Pattern string P:m the length of P;alphabet size

alpha=|Σ|
• Output:Array charJump,defined on indexes

0,....,alpha-1.The array is passed in and the algorithm
fills it.

• void computeJumps(char[] P,int m,int alpha,int[]
charJump)

• char ch; int k;
• for (ch=0;ch<alpha;ch++)
• charJump[ch]=m;
• for (k=1;k<=m;k++)
• charJump[pk]=m-k;

3

If you wish to understand you must
• …

