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- a formal notion of what a “problem” is
> high-level description of a problem
* We define an abstract problem Q to be
~a binary relation on
- a set I of problem instances, and
> a set S of problem solutions.
FQelxS
* Three Kinds of Problems
~ Decision Problem
- e.g. Is there a solution better than some given bound?
~ Optimal Value
> e.g. What is the value of a best possible solution?

~ Optimal Solution
> e.g. Find a solution that achieves the optimal value.

Encodings

Concrete Problem

> // Data Structure
- describing abstract problems (for solving by computers)
- in terms of data structure or binary strings
* An encoding of a set S of abstract objects is
- a mapping e from S to the set of binary strings.
» Encoding for Decision problems
~Problem instances, e : 1> {0, 1}*
> Solution, e : S 2> {0, 1}
+ “Standard” encoding
> computing time may be a function of encoding
> // The size of the input (the number of bit to represent one input)
- polynomially related encodings
~-assume encoding in a r ble concise fashi

-~ problem instances and solutions are represented in data
structure or binary strings

- // Language (in formal-language framework)
* We call a problem whose instance set (and solution
set) is the set of binary strings a concrete problem.
+ Computer algorithm solves concrete problems!
> solves a concrete problem in time O(T(n))
- if provided a problem instance i of length n = |i|,
> the algorithm can produce the solution
~in a most O(T(n)) time.
A concrete problem is polynomial-time solvable
~-if there exists an algorithm to solve it in time O(n)
~for some constant k. (also called polynomially bounded)

Class of Problems

- // What makes a problem hard?
) // Make simple: classify decision problems
* Definition: The class P
> P is the class of decision problems that are polynomially
bounded.
> // there exist a deterministic algorithm
 Definition: The class NP
- NP is the class of decision problems for which there is a

polynomially bounded non-deterministic algorithm.

> The name NP comes from “Non-deterministic Polynomially
bounded.”

> // there exist a non-deterministic algorithm

¢ Theorem: P < NP

The Class NP

* NP is a class of decision problems for which
"> a given proposed solution (called certificate) for
> a given input
»> can be checked quickly (in polynomial time)
> to see if it really is a solution.
* A non-deterministic algorithm
= The deterministic ing” phase.
> Some completely arbitrary string s, “proposed solution™
> each time the algorithm is run the string may differ
= The deterministic “verifying” phase.
~ a deterministic algorithm takes the input of the problem and the proposed
solution s, and
> return value true or false
> The output step.

~ If the verifying phase returned true, the algorithm outputs yes. Otherwise,
there is no output.




The Class NP-Complete

Polynomial Reductions

* A problem Q is NP-complete
~ifit is in NP and
> it is NP-hard.
* A problem Q is NP-hard
- if every problem in NP
~-is reducible to Q.
* A problem P is reducible to a problem Q if
- there exists a polynomial reduction function T such that
> For every string x,
> if x is a yes input for P, then T(x) is a yes input for Q
> if x is a no input for P, then T(x) is a no input for Q.
> T can be computed in polynomially bounded time.

* Problem P is reducible to Q
>P<pQ

= Transforming inputs of P
> to inputs of Q

+ Reducibility relation is transitive.
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Circuit-satisfiability problem is NP-Complete

NP-Completeness Proofs

« Circuit-satisfiability problem
~belongs to the class NP, and
is NP-hard, i.e.
> every problem in NP is reducible to circuit-satisfiability problem!
« Circuit-satisfiablity problem
> we say that a one-output Boolean combinational circuit
is satisfiable
> if it has a satisfying assignment,
> a truth assignment (a set of Boolean input values) that
> causes the output of the circuit to be 1

e Proof...

= Once we proved a NP-complete problem

* To show that the problem Q is NP-complete,
-~ choose a know NP-complete problem P
~reduce P to Q

* The logic is as follows:

- since P is NP-complete,

> all problems R in NP are reducible to P, R <p P.
~show P <p Q
> then all problem R in NP satisfy R <p Q,

> by transitivity of reductions

> therefore Q is NP-complete

Solving hard problems:
Approximation Algorithms

- an algorithm that returns near-optimal solutions
> may use heuristic methods
> e.g. greedy heuristics
» Definition:Approximation algorithm
- An approximation algorithm for a problem is
~a polynomial-time algorithm that,
= when given input I, outputs an element of FS(I).
* Definition: Feasible solution set
7 A feasible solution is

- an object of the right type but
not necessarily an optimal one.

= FS(I) is the set of feasible solutions for I.

Approximation Algorithm e.g. Bin Packing

- How to pack or store objects of various sizes and shapes
~ with a minimum of wasted space
* Bin Packing
> LetS=(s;, ..., S,)
= where 0 <s;<=1forl<=i<=n
> pack s, ..., s, into as few bin as possible
> where each bin has capacity one
+ Optimal solution for Bin Packing
> considering all ways to
- partition S into n or fewer subsets
> there are more than
2 (n/2)™2 possible partitions




Bin Packing: First fit decreasing strategy

Algorithm: Bin Packing (first fit decreasing)

- places an object in the first bin in which it fits
~W(n) in O(n?)
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 Input: A sequence S=(s, _s,) of type float, where 0<s;<1 for I<=i<=n. S represents the
sizes of objects {1,...,n} to be placed in bins of capacity 1.0 each.

% Output: An array bin where for 1<=i<=n, bin[i] is the number of the bin into which object
i is placed.For simplicity,objects are indexed after being sorted in the algorithm. The array
is passed in and the algorithm fills it.

*  binpackFFd(S,n,bin)
«  float[] used=new float[n+1];
*  /fused[j] is the amount of space in bin j already used up.
. int i,j;
Initialize all used entries to 0.0
*  Sort S into descending(nonincreasing)order,giving the sequence s,>=S,>=...>=S
for(i=1;i<=n;i++)
//Look for a bin in which s[i] fits.
+ for(j=lj<=ngj++)
if(used[j]+s;<+1.0)
bin[ilj;
. used[j] +=s;
break; //exit for(j)
//continue for(i).

The Traveling Salesperson Problem

Approximation algorithm for TSP

) given a complete, weighted graph
~-find a tour (a cycle through all the vertices) of
~ minimum weight
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» The Nearest-Neighbor Strategy
~as in Prim’s algorithm ...
* NearestTSP(V, E, W)
7 Select an arbitrary vertex s to start the cycle C.
Fv=s;
- While there are vertices not yet in C:
> Select an edge vw of minimum weight, where w is not in C.
> Add edge vw to C;
V=W,
- Add the edge vs to C.
~return C;
« W(n) in O(n?)

> where n is the number of vertices




