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TECH
Computer Science

NP-Complete Problems

• Problems
Abstract Problems
f Decision Problem, Optimal value, Optimal solution

Encodings
f //Data Structure

Concrete Problem
f //Language

• Class of Problems
P
NP
NP-Complete
f NP-Completeness Proofs

• Solving hard problems
Approximation Algorithms

Abstract Problems
a formal notion of what a “problem” is
high-level description of a problem

• We define an abstract problem Q to be 
a binary relation on 
a set I of problem instances, and
a set S of problem solutions.
Q ∈ I × S

• Three Kinds of Problems
Decision Problem
f e.g. Is there a solution better than some given bound?

Optimal Value
f e.g. What is the value of a best possible solution?

Optimal Solution
f e.g. Find a solution that achieves the optimal value. 

Encodings 
// Data Structure
describing abstract problems (for solving by computers)
in terms of data structure or binary strings

• An encoding of a set S of abstract objects is 
a mapping e from S to the set of binary strings. 

• Encoding for Decision problems
Problem instances,  e : I {0, 1}*
Solution, e : S {0, 1}

• “Standard” encoding
computing time may be a function of encoding
f // The size of the input (the number of bit to represent one input)

polynomially related encodings 
assume encoding in a reasonable concise fashion

Concrete Problem
problem instances and solutions are represented in data 
structure or binary strings
// Language (in formal-language framework)

• We call a problem whose instance set (and solution 
set) is the set of binary strings a concrete problem.

• Computer algorithm solves concrete problems!
solves a concrete problem in time O(T(n)) 
if provided a problem instance i of length n = |i|,
the algorithm can produce the solution
in a most O(T(n)) time. 

• A concrete problem is polynomial-time solvable
if there exists an algorithm to solve it in time O(nk)
for some constant k. (also called polynomially bounded)

Class of Problems
// What makes a problem hard?
// Make simple: classify decision problems

• Definition: The class P
P is the class of decision problems that are polynomially 
bounded. 
f // there exist a deterministic algorithm

• Definition: The class NP
NP is the class of decision problems for which there is a 
polynomially bounded non-deterministic algorithm. 
f The name NP comes from “Non-deterministic Polynomially 

bounded.”
f // there exist a non-deterministic algorithm

• Theorem:  P ⊆ NP

The Class NP
• NP is a class of decision problems for which

a given proposed solution (called certificate) for
a given input
can be checked quickly (in polynomial time)
to see if it really is a solution.

• A non-deterministic algorithm
The non-deterministic “guessing” phase. 
f Some completely arbitrary string s, “proposed solution”
f each time the algorithm is run the string may differ

The deterministic “verifying” phase.
f a deterministic algorithm takes the input of the problem and the proposed 

solution s, and
f return value true or false

The output step.
f If the verifying phase returned true, the algorithm outputs yes. Otherwise, 

there is no output.
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The Class NP-Complete
• A problem Q is NP-complete

if it is in NP and 
it is NP-hard.

• A problem Q is NP-hard
if every problem in NP 
is reducible to Q.

• A problem P is reducible to a problem Q if 
there exists a polynomial reduction function T such that
f For every string x, 
f if x is a yes input for P, then T(x) is a yes input for Q
f if x is a no input for P, then T(x) is a no input for Q. 
f T can be computed in polynomially bounded time. 

Polynomial Reductions
• Problem P is reducible to Q

P ≤p Q
Transforming inputs of P 
f to inputs of Q

• Reducibility relation is transitive.

Circuit-satisfiability problem is NP-Complete
• Circuit-satisfiability problem

belongs to the class NP, and 
is NP-hard, i.e. 
f every problem in NP is reducible to circuit-satisfiability problem!

• Circuit-satisfiablity problem
we say that a one-output Boolean combinational circuit 
is satisfiable
f if it has a satisfying assignment, 
f a truth assignment (a set of Boolean input values) that
f causes the output of the circuit to be 1

• Proof…

NP-Completeness Proofs
Once we proved a NP-complete problem

• To show that the problem Q is NP-complete,
choose a know NP-complete problem P
reduce P to Q

• The logic is as follows:
since P is NP-complete, 
f all problems R in NP are reducible to P, R ≤p P.

show P ≤p Q
then all problem R in NP satisfy R ≤p Q, 
f by transitivity of reductions

therefore Q is NP-complete

Solving hard problems:
Approximation Algorithms

an algorithm that returns near-optimal solutions
may use heuristic methods
f e.g. greedy heuristics

• Definition:Approximation algorithm
An approximation algorithm for a problem is 
a polynomial-time algorithm that, 
when given input I, outputs an element of FS(I).

• Definition: Feasible solution set
A feasible solution is 
an object of the right type but 
not necessarily an optimal one. 
FS(I) is the set of feasible solutions for I.

Approximation Algorithm e.g. Bin Packing
How to pack or store objects of various sizes and shapes 
with a minimum of wasted space

• Bin Packing
Let S = (s1, …, sn)
f where 0 < si <= 1 for 1 <= i <= n

pack s1, …, sn into as few bin as possible
f where each bin has capacity one

• Optimal solution for Bin Packing
considering all ways to
partition S into n or fewer subsets
there are more than 
(n/2)n/2  possible partitions
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Bin Packing: First fit decreasing strategy
places an object in the first bin in which it fits
W(n) in θ(n2)

Algorithm: Bin Packing (first fit decreasing)
Input: A sequence S=(s1,….,sn) of type float, where 0<si<1 for 1<=i<=n. S represents the 
sizes of objects {1,...,n} to be placed in bins of capacity 1.0 each.
Output: An array bin where for 1<=i<=n, bin[i] is the number of the bin into which object 
i is placed.For simplicity,objects are indexed after being sorted in the algorithm.The array 
is passed in and the algorithm fills it.

• binpackFFd(S,n,bin)
• float[] used=new float[n+1];
• //used[j] is the amount of space in bin j already used up.
• int i,j;
• Initialize all used entries to 0.0
• Sort S into descending(nonincreasing)order,giving the sequence s1>=S2>=…>=Sn.
• for(i=1;i<=n;i++)
• //Look for a bin in which s[i] fits.
• for(j=1;j<=n;j++)
• if(used[j]+si<+1.0)
• bin[i]=j; 
• used[j] += si;
• break;  //exit for(j)
• //continue for(i).   

The Traveling Salesperson Problem
given a complete, weighted graph
find a tour (a cycle through all the vertices) of
minimum weight

• e.g.

Approximation algorithm for TSP
• The Nearest-Neighbor Strategy

as in Prim’s algorithm …

• NearestTSP(V, E, W)
Select an arbitrary vertex s to start the cycle C.
v = s;
While there are vertices not yet in C:
f Select an edge vw of minimum weight, where w is not in C.
f Add edge vw to C;
f v = w;

Add the edge vs to C.
return C;

• W(n) in O(n2)
f where n is the number of vertices


