
Introduction to Parallel Processing

• 3.1 Basic concepts
• 3.2 Types and levels of parallelism
• 3.3 Classification of parallel architecture
• 3.4 Basic parallel techniques
• 3.5 Relationships between languages and parallel

architecture

CH03

TECH
Computer Science

3.1 Basic concepts
• 3.1.1 The concept of program

ordered set of instructions (programmer’s view)
executable file (operating system’s view)

The concept of process
• OS view, process relates to execution
• Process creation

setting up the process description
allocating an address space
loading the program into the allocated address space,
and
passing the process description to the scheduler

• process states
ready to run
running
wait

Process spawning
(independent processes)
• Figure 3.3 Process spawning.

A

CB

D E

3.1.3 The concept of thread
• smaller chunks of code (lightweight)
• threads are created within and belong to process
• for parallel thread processing, scheduling is

performed on a per-thread basis
• finer-grain, less overhead on switching from thread to

thread

Single-thread process or
multi-thread (dependent)

Figure 3.5 Thread tree

Process

Threads

Three basic methods for creating and
terminating threads
• 1. unsynchronized creation and unsynchronized

termination
calling library functions: CREATE_THREAD,
START_THREAD

• 2. unsynchronized creation and synchronized
termination

FORK and JOIN

• 3. synchronized creation and synchronized
termination

COBEGIN and COEND

3.1.4 Processes and threads in languages

• Black box view: T: thread
T2 T0 T1 T1 T2 T0 . . . Tn

FORK

JOIN

FORK

JOIN

(a)

COBEGIN

COEND

. . .

(b)

3.1.5 The concepts of concurrent execution
(N-client 1-server)

Non pre-emptive Pre-emptive

Time-shared Priotized

Priority
Sever SeverSever

Client ClientClient

Parallel execution
• N-client N-server model
• Synchronous or Asynchronous

SeverClient

Concurrent and parallel
programming languages

• Classification

Languages 1_client
1-server
model

N_client
1-server
mode

1_client
N-server
model

N_client
N-server
model

sequential + - - -

concurrent - + - -

Data-parallel - - + -

Parallel - + - +

Table 3.1 Classification of programming languages.

3.2 Types and levels of parallelism
• 3.2.1 Available and utilized parallelism

available: in program or in the problem solutions
utilized: during execution

• 3.2.2 Types of available parallelism
functional
f arises from the logic of a problem solution

data
f arises from data structures

• Figure 3.11 Available and utilized levels of functional parallelism

Available levels Utilized levels

User (program) level User level

Procedure level Process level

Loop level Thread level

Instruction level Instruction level

2

1

1.Exploited by architectures
2.Exploited by means of operating systems

3.2.4 Utilization of functional parallelism
• Available parallelism can be utilized by

architecture,
f instruction-level parallel architectures

compilers
f parallel optimizing compiler

operating system
f multitasking

3.2.5 Concurrent execution models
• User level --- Multiprogramming, time sharing
• Process level --- Multitasking
• Thread level --- Multi-threading

3.2.6 Utilization of data parallelism
• by using data-parallel architecture

3.3 Classification of parallel architectures
• 3.3.1 Flynn’s classification

SISD
SIMD
MISD (Multiple Instruction Single Date)
MIMD

Parallel architectures
PAs

Part III Part II Part IV

Data-parallel architectures Function-parallel architectures

Instruction-level

PAs

Thread-level

PAs

Process-level
PAs

ILPS MIMDs

Vector
architecture

Associative
architecture

architectureand neural SIMDs Systolic Pipelined
processors

Processors)
processorsVLIWs Superscalar Ditributedmemory

(multi-computer)

Sharedmemory
(multi-MIMD

DPs

Parallel architectures //

3.4 Basic parallel technique
• 3.4.1 Pipelining (time)

a number of functional units are employed in sequence
to perform a single computation
a number of steps for each computation

• 3.4.2 Replication (space)
a number of functional units perform multiply
computation simultaneously
f more processors
f more memory
f more I/O

more computers

3.5 Relationships between languages and parallel
architecture

• SPMD (Single Procedure Multiple data)
Loop: split into N threads that works on different
invocations of the same loop
threads can execute the same code at different speeds
synchronize the parallel threads at the end of the loop
f barrier synchronization

use MIMD

• Data-parallel languages
DAP Fortran
f C = A + B

use SIMD

Synchronization mechanisms
• Figure 3.17 Progress of language constructs used for synchronization

Test_and_set

Semaphore

Conditional
Critical region

Monitor

Rendezvous

Send/receive
message

Broadcast Shift
net_receive

(processor form)

Remote procedure calls

Net_send

Using binary Semaphore p1 or
queue semaphore p2

P1

Critical
region

V(S)

S Semaphore

Shared
data

structure
V(S)

P(S)

P2

Critical
region

P(S)

Figure 3.18 Using a semaphore to solve the mutual execution problem

Busy
Wait

Parallel distributed computing
• Ada

used rendezvous concepts which combines feature of
RPC and monitors

• PVM (Parallel Virtual Machine)
to support workstation clusters

• MPI (Message-Passing Interface)
programming interface for parallel computers

• COBRA ?
• Windows NT ?

Summary of forms of parallelism
• See Table 3.3

