
6 VLIW Architectures

TECH
Computer Science

• {Very Long Instruction Word}
• {EPIC: Explicit Parallel Instruction-set Computer}
• {CISC RISC EPIC}
• 6.1 Basic principles
• 6.2 Overview of proposed and commercial VLIW

architectures
• 6.3 Case study: The Trace 200 family

CH01

Basic Structure of VLIW Architecture

Basic principle of VLIW
• Controlled by very long instruction words

comprising a control field for each of the execution units

• Length of instruction depends on
the number of execution units (5-30 EU)
the code lengths required for controlling each EU (16-32
bits)
256 to 1024 bits

• Disadvantages: on average only some of the control
fields will actually be used

waste memory space and memory bandwidth
e.g. Fortran code is 3 times larger for VLIW (Trace
processor)

Instruction word format: Trace 7/200

VLIW: Static Scheduling of instructions/
• Instruction scheduling done entirely by [software]

compiler
• Lesser Hardware complexity translate to

increase the clock rate
raise the degree of parallelism (more EU);
{Can this be utilized?}

• Higher Software (compiler) complexity
compiler needs to aware hardware detail
f number of EU, their latencies, repetition rates, memory load-use

delay, and so on
f cache misses: compiler has to take into account worst-case delay

value
this hardware dependency restricts the use of the same
compiler for a family of VLIW processors

6.2 overview of proposed and commercial VLIW
architectures

6.3 Case study: Trace 200 Trace 7/200
• 256-bit VLIW words
• Capable of executing 7 instructions/cycle

4 integer operations
2 FP
1 Conditional branch

• Found that every 5th to 8th operation on average is a
conditional branch

• Use sophisticated branching scheme: multi-way
branching capability

executing multi-paths
assign priority code corresponds to its relative order

Trace 28/200: storing long instructions
• 1024 bit per instruction
• a number of 32-bit fields maybe empty
• Storing scheme to save space

32-bit mask indicating each sub-field is empty or not
followed by all sub-fields that are not empty
resulting still 3 time larger memory space required to
store Fortran code (vs. VAX object code)
very complex hardware for cache fill and refill

• Performance data is Impressive indeed!

Trace: Performance data

Transmeta: Crusoe
• Full x86-compatible: by dynamic code translation
• High performance: 700MHz in mobile platforms

Crusoe
• “Remarkably low power consumption”

“A full day of web browsing on a single battery charge”
(333-400Mhz TM3120 in production now, running
Linux! TM5400 runs Windows, production mid 2000)

• Playing DVD: Conventional? 105 C vs. Crusoe: 48 C

Intel: Itanium (VLIW) {EPIC} Processor

